
6.842 Randomness and Computation February 25, 2020

Lecture 6
Lecturer: Ronitt Rubinfeld Scribe: Alexander Dimitrakakis

Overview
• A simple randomized algorithm for max cut

• Pairwise independent sample spaces

• Derandomization

1 Max Cut
Let us first define the maximum cut problem that we will work with throughout this lecture.

Definition 1 (Max Cut) Given a graph 𝐺 = (𝑉 , 𝐸), the max cut of the graph 𝐺 is a partition of the
vertices of 𝐺 into two sets, say 𝑆 and 𝑇 , that maximizes the following quantity |{(𝑢, 𝑣)|𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇 }|

This is a particularly hard problem, as it is NP-Complete. In the example in the very simple graph
shown in Fig. 2, the max cut would be to assign 𝑆 = {1} and 𝑇 = {0, 2}. Then both edges would cross
the cut and we would necessarily have a maximum cut 2-partition of the graph.

Let us now detail the construction of a simple randomized algorithm for finding a cut that is within a
factor of 2 of the max cut. The algorithm is detailed below:

Figure 1: Randomized Max Cut
Algorithm 1 1: 𝑆 = ∅

2: 𝑇 = ∅
3: for each vertex i = 1, ..., n do
4: Flip a coin 𝑟𝑖 ∈ {0, 1}
5: If 𝑟𝑖 = 1, place vertex 𝑖 into subset 𝑆, or into subset 𝑇 if 𝑟𝑖 = 0
6: Return 𝑆, 𝑇

As is evident from the algorithm, we are just placing the vertices randomly into either sets 𝑆 or 𝑇 . The
expected value of the cut, i.e. the number of edges crossing the cut, is calculated below. Before we
calculate it, however, we must define the random variable 1(𝑢,𝑣) as follows:

1(𝑢,𝑣) = {1 if 𝑟𝑢 ≠ 𝑟𝑣
0 otherwise.

Now we are ready to calculate the expected value of the cut:

𝐸[cut] = 𝐸[∑
(𝑢,𝑣) 𝑖𝑛𝐸

1(𝑢,𝑣)] = ∑
(𝑢,𝑣) 𝑖𝑛𝐸

𝐸[1(𝑢,𝑣)] = ∑
(𝑢,𝑣) 𝑖𝑛𝐸

𝑃𝑟[1(𝑢,𝑣) = 1] = |𝐸|
2 (1)

The main assumption that we have made is in calculating the probability that a particular edge crosses
the cut (𝑃 𝑟[1(𝑢,𝑣) = 1]). We assumed that 𝑟𝑢 and 𝑟𝑣 are independent cointosses from Algorithm 1

1

Figure 2: A simple 3 node graph.

and, thus, the edge (𝑢, 𝑣) crosses the cut if 𝑟𝑢 ≠ 𝑟𝑣. Assuming independence of these two variables,
we get that 𝑃𝑟[𝑟𝑢 ≠ 𝑟𝑣] = 1/2, given that each is equally likely to be zero or one. What we have as-
sumed here is something weaker than ’total’ independence, it is pairwise independence of the coin tosses.

Another interesting observation is that because the expected value of the cut is |𝐸|
2 , there must be at

least one partition of the vertices into two sets that creates a cut of value greater or equal to |𝐸|
2 , since

the average of all the random cuts is |𝐸|
2 . Also, for any graph, the cut size cannot exceed the number of

edges present in the graph (|𝐸|), so we get the following inequality:

|𝐸|
2 ≤ Max Cut ≤ |𝐸|

.
The only source of randomness in the algorithm comes from the unbiased cointosses. We flip 𝑛 = |𝑉 | coins
to determine where to place each vertex. If we looked at all the 2𝑛 possibilities of every combination of
cointosses occuring, we would surely get the max cut of the graph. However, this requires an exponential
number of operations and is not useful. In the remainder of the lecture we will try to reduce the number
of random bits required so that we definitevely get a good result, such as a max cut of size at least |𝐸|

2 .

2 Pairwise Independence
We start this section by defining a few notions of independence. Let there be 𝑛 random variables
𝑋1, ⋯ , 𝑋𝑛, where each belongs to the domain 𝑇 with |𝑇 | = 𝑡 (𝑋𝑖 ∈ 𝑇).

2

Figure 3: The Randomness Generator.

Definition 2 (Independent) The random variables 𝑋1, ⋯ 𝑋𝑛 are independent, if for every 𝑏1 ⋯ 𝑏𝑛 ∈
𝑇 𝑛, the following holds: 𝑃𝑟[𝑋1 ⋯ 𝑋𝑛 = 𝑏1 ⋯ 𝑏𝑛] = (1

𝑡)𝑛.

Definition 3 (Pairwise Independent) The random variables 𝑋1, ⋯ 𝑋𝑛 are pairwise independent, if
for every 𝑖 ≠ 𝑗 and 𝑏𝑖, 𝑏𝑗 ∈ 𝑇 , the following holds: 𝑃𝑟[𝑋𝑖, 𝑋𝑗 = 𝑏𝑖, 𝑏𝑗] = (1

𝑡)2.

Definition 4 (𝑘-wise Independent) The random variables 𝑋1, ⋯ , 𝑋𝑛 are 𝑘-wise independent, if for
every distinct 𝑖1, ⋯ , 𝑖𝑘 and 𝑏𝑖1

, ⋯ , 𝑏𝑖𝑘
∈ 𝑇 𝑘, the following holds: 𝑃𝑟[𝑋𝑖1

, ⋯ , 𝑋𝑖𝑘
= 𝑏𝑖1

, ⋯ , 𝑏𝑖𝑘
] = (1

𝑡)𝑘.

The strongest form of independence is Independence used in Definition 2 and the weakest is pairwise
independence. However, in the proof of the expected value of the cut of the randomized max cut
algorithm presented (Algorithm 1), we only needed to use pairwise independence.

3 Derandomization of the Max Cut Algorithm
3.1 Partial Enumeration
We now attempt to derandomize the max cut algorithm (Algorithm 1) and present an algorithm that
deterministically finds a cut within a factor of 2 of the optimal cut. One possibility would be to enu-
merate over the 2𝑛 possibilities of the outcomes of the random cointosses. Then we would get the true
maximum cut and not an approximation of it. However, this would take exponential time, so we need
to test fewer random bits somehow.

Our approach is to do something called partial enumeration. More specifically, we will only look at a
subset of the 2𝑛 possibilities of the random bits and require that the bits/cointosses satisfy pairwise
independence, but not complete independence. If the cointosses satisfy pairwise independence, then
Equation 1 we saw earlier still holds and 𝐸[cut] = |𝐸|

2 . If this holds, enumerating over all the possible
cointosses in our set of pairwise independent bits will result in at least one cut that has value greater or
equal to |𝐸|

2 .

As can be seen in Fig. 3, the ’Randomness Generator’ is provided 𝑚 totally independent bits according
to Definition 2 and returns 𝑛 pairwise independent bits according to Definition 3. Once we have these

3

pairwise independent bits we can pass them all into our original Randomized Max Cut Algorithm (Al-
gorithm 1) and output the cut that produces the maximum cut value among all the ones we have seen.
This cut is guaranteed to be within a factor of 2 of the optimal max cut according to the reasoning
presented above. The runtime for this algorithm is 𝑂(2𝑚 × (runtime for Algorithm 1)), because we run
Algorithm 1 2𝑚 times for every possibility of the totally independent bits 𝑏1...𝑏𝑚.

3.2 Randomness Generator
Now we focus on the details of the ’Randomness Generator’. Once we have it we should be done. There
are multiple different constructions that work for this generator. One example that is covered as an
exercise in Problem Set 2 is that we are given 𝑚 totally independent bits 𝑏1...𝑏𝑚 and we consider the
XOR, in other words the parity, of every possible subset of these bits excluding the empty subset. For
this we only need 𝑚 = log 𝑛+1 to output 𝑛 pairwise independent bits. The proof is exercise 2 of Problem
Set 2.

An Alternative construction would be to focus on the set of integers Z𝑞 = [0, 1, 2, ..., 𝑞 − 1] where 𝑞 is
prime and use a family of hash functions. We will use 2 log 𝑞 totally independent random bits to generate
𝑞 pairwise independent bits.

Consider a family of hash functions ℋ = {ℎ1, ℎ2, ...} with every ℎ𝑖 ∶ 𝑁 → 𝑀 . We say that this family
is a family of pairwise independent hash functions if when ℎ ∈𝑢 ℋ:

• for every 𝑥 ∈ 𝑁 , then ℎ(𝑥) ∈𝑢 𝑀
• for every 𝑥1 ≠ 𝑥2 ∈ 𝑁 , then ℎ(𝑥1) and ℎ(𝑥2) are independent

An equivalent way to define a pairwise independent hash function family is the following: For every
𝑥1 ≠ 𝑥2 ∈ 𝑁 and for every 𝑦1, 𝑦2 ∈ 𝑀 , 𝑃𝑟ℎ∈ℋ[ℎ(𝑥1) = 𝑦1 ∧ ℎ(𝑥2) = 𝑦2] = 1

|𝑀|2 .

We consider the following hash family. Given 𝑎, 𝑏 ∈ Z𝑞, ℎ𝑎,𝑏(𝑖) = 𝑎𝑖+𝑏 mod 𝑞. This function set defines
the family ℋ0 that has 𝑞2 elements, one for every pair of values (𝑎, 𝑏). Our randomness generator then
works as follows:

• Pick 𝑎, 𝑏 ∈ Z𝑞

• Compute and save 𝑟𝑖 = 𝑎𝑖 + 𝑏 mod 𝑞
• Output 𝑟1𝑟2...𝑟𝑞

Notice that if 𝑞 = 2, every 𝑟𝑖 is a bit that takes the value 0 or 1. However, our construction is more
general. Now all we have to do is to prove that our hash family ℋ0 is a pairwise independent hash
function family. Given two values 𝑖1, 𝑖2 ∈ Z𝑞 that are distinct, the hash function family is pairwise
independent if:

𝑃𝑟𝑎,𝑏∈Z𝑞
[ℎ𝑎,𝑏(𝑖1) = 𝑐 ∧ ℎ𝑎,𝑏(𝑖2) = 𝑑] = 1

𝑞2 ⟺ 𝑃𝑟𝑎,𝑏∈Z𝑞
[𝑎𝑖1 + 𝑏 mod 𝑞 = 𝑐 ∧ 𝑎𝑖2 + 𝑏 mod 𝑞 = 𝑑] = 1

𝑞2

.
We now use some linear algebra. The above equation implies that since the probability is equal to 1/𝑞2,
there is exactly one pair of values (𝑎, 𝑏) that make both 𝑎𝑖1 + 𝑏 mod 𝑞 = 𝑐 and 𝑎𝑖2 + 𝑏 mod 𝑞 = 𝑑.

4

Hence, the question is whether there is a unique solution to the following equation when 𝑎 and 𝑏 are the
variables:

[𝑖1 1
𝑖2 1] [𝑎

𝑏] = [𝑐
𝑑]

This is equivalent to asking whether the first matrix [𝑖1 1
𝑖2 1] is invertible. Its determinant is equal

to 𝑖1 − 𝑖2 ≠ 0, because 𝑖1, 𝑖2 ∈ Z𝑞 and 𝑖1 ≠ 𝑖2, so the determinant is non-singular. Therefore there
is a unique solution for (𝑎, 𝑏) and we have proven that the family of hash functions ℋ0 is a pairwise
independent hash function family.

5

